VRを用いた冠水状況体験 システムの開発

東京電機大学 未来科学部 情報メディア学科 比企野裕・千葉 尭・森谷友昭・髙橋時市郎

Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

2

1

研究背景 洪水⇒早期避難率向上が課題

- ・道路が冠水してからの避難は難しいという 事実が浸透していない
- ・逃げ遅れ⇒被害拡大

平成30年7月豪雨

日経電子版より https://www.nikkei.com/article/DGX MZO32772080Z00C18A7MM8000/ 1/28/2020

洪水八ザードマップ作成の手引き (改定版)平成25年

Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

2

既存の冠水状況体験システム

1/28/2020

3

Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

3

5

既存の冠水状況体験システムの例

- ・大規模・高価
- ・浸水の様子を見るだけ
- ・誰もが手軽に体験できない ・危険性が伝わりにくい

いであ株式会社: https://www.moguravr.com/idea -vr-ar/

VRscope for ハザード

-凸版印刷 https://www.toppan.co.jp/soluti on/service/VRscope.html

Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

4

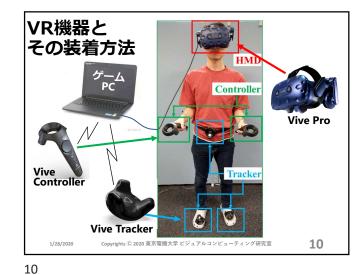
6

VRを用いた冠水状況体験 システム (VR避難体験システム)

1/28/2020

Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

提案システムを使ったVR避難体験 ②冠水時の避難 ①冠水前の避難 避難時に障害物となるものを 探しながら,避難場所まで 仮想空間をウォークスルー よく知る町並みで擬似体験 避難遅れ⇒避難困難 思わぬものが障害物に VR避難体験を通じて 避難時に障害となるものを 早期避難の重要性を認識する 日頃から観響 身に付ける Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室 6 1/28/2020



8

提案システムの構成

1/28/2020 Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室 **9**

9

ユーザの移動方法と 冠水時の歩行可否の判定

1/28/2020 Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

11

・足踏みすることで移動

ユーザの移動方法

進行方向は,腰の向いている方向

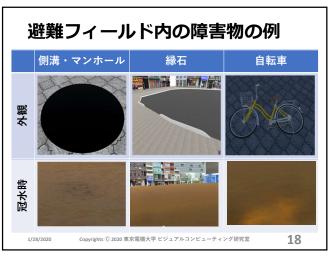
・足踏み速度(回数)に 比例して,速く移動

12

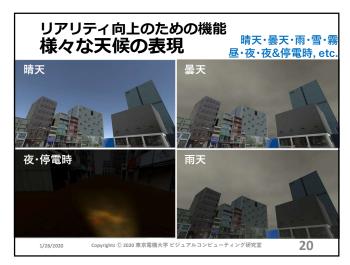
1/28/2020 Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

11 12

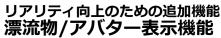
冠水時のヒトの歩行安定性の計算式 DV = 0.0043HM + 0.35351.2 D(m):水深 0.8 0.6 0.4 1 V(m):流速 H(m):身長 M(kg):体重 0.2 100 R. J. Cox, et al. (2010) H.M(mkg) ・身長×体重が大きいほど安定性を保ちやすい ● 身長1.7m, 体重60kgの場合, DV = 0.8 ● 身長1.3m, 体重30kgの場合, DV = 0.5 Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室 14


Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室 13

13 14


17 18

リアリティ向上のための機能


1/28/2020 Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

19

19

20

VR避難体験システムの 評価・考察・今後の課題

1/28/2020

Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室

22

21

アンケートによる評価結果(一部)

設問	内 容					
設問1	水害時には事前に避難する必要があると思ったか					
設問2	冠水時の避難は危険であると感じたか					
設問3 臨場感はあったか						
設問	1点	2点	3点	4点	5点	平均点
設問1	1人	0人	2人	3人	4人	3.9点
設問2	0人	0人	0人	2人	8人	4.8点
設問3	0人	0人	0人	8人	2人	4.2点
設問4	2人	3人	2人	3人	0人	2.6点
1/28/2020 Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室						23

むすび

22

- ・洪水災害時の避難率を向上するため、VR上で冠水時の 避難体験ができ、早期避難の重要性を理解できるシス テムを開発した
- ・ユーザの身長・体重をもとに,避難時のヒトの歩行動 作の安定性を計算可能である

今後の課題

・冠水災害のシミュレーション結果を利用して, 流速や水深の変化など, 時間経過に伴い変化する避難状況の再現

Copyrights © 2020 東京電機大学 ビジュアルコンピューティング研究室 24 1/28/2020